
今回は，AIを活用した結晶構造予測（CSP＝Crystal 

Structure Prediction）および逆生成（Inverse Design）の
基本的な考え方から，代表的な手法，応用事例，そして今
後の課題について解説する．

結晶構造予測とは
物質は原子の集合体であり，それぞれの原子がどのよう
に配置されているかによって物質の性質が決まる．この原
子の並び方を結晶構造とよぶ．たとえば同じ炭素原子で
も，並び方が異なればまったく異なる見た目や特性をとる
黒鉛にもダイヤモンドにもなる．また，塩化ナトリウムの
ように単純な構造をとる結晶もあれば遷移金属酸化物のよ
うに複雑な構造をとる結晶（図1）も存在する．さらに外
部の圧力や温度によっても形成される結晶構造は変化す
る．
結晶構造予測は，ある化学組成が与えられたとき，それ
に対応する最も安定な結晶構造を理論的に予測する方法で
ある．通常は，ランダムに多くの結晶構造を仮定し，それ
ぞれの安定性，つまりエネルギーを評価し，最も安定な構
造を探索する．このエネルギー計算には，密度汎関数法

（DFT）が利用されることが多いが，最近では汎用性と性
能が改善されてきたニューラルネットワークポテンシャル
が利用されることも多くなっている．

CSPは，水平方向が候補構造，高さ方向がエネルギーに
相当するようなエネルギー地形上で，最も低い箇所（極
小）を探索する問題である．この地形は非常に複雑で，単
に今の候補構造から貪欲的にエネルギーを下げるような構
造変化を求める手法では最適解に到達しない．
これまでCSPの最適化として，ランダム構造探索，遺
伝的アルゴリズム（例： USPEX（文献1））などが提案さ
れている．これらは初期構造をランダムあるいは経験的
ルールで生成し，エネルギー評価に基づいて構造を進化
（変位・交叉・局所緩和）させていく．
以前よりこうした手法は広く使われていたが，広大な探

索空間を計算するためには膨大な計算コストが必要である
という問題があった．しかし近年，高速かつ高精度な
ニューラルネットワークポテンシャルの登場により，これ
らの手法を大規模に実施できるようになってきた．さら
に，洗練された最適化手法と組合わせることで，未知の結
晶構造を計算で予測したり（図2），元素系が与えられた
ときに，異なる化学組成の構造を同時に探索して，相図を
推定するといったことも可能となっている（文献2）．
さらに最近では，生成モデルを活用して有望な初期構造

を直接生成し，そのうえで上記のような手法で結晶構造を
予測する方法や，探索そのものを機械学習で行う方法も多
く提案されている．この背景には，Materials Project（文
献3）などの材料データベースの整備が進んでいることが
あげられる．
たとえば，ShotgunCSP（文献4）では，データベース

に基づき既知構造をもとに新規候補を大規模に生成し，そ
れらの安定性を転移学習（あるタスクで学習されたモデル
を類似のタスクに応用すること）によって精度を向上させ
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図1�　酸化チタンの結晶構造の単位例　このような単位が
繰返されて結晶構造が構成される．
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たエネルギー予測モデルで評価した．さらに，既知構造か
らの元素置換や結晶対称性に基づく部分構造の組合わせに
よる2種類の生成アルゴリズムを組合わせることで，90種
類のテスト構造に対して93.3％の精度で最安定構造を予測
することに成功している．
また，MatterGen （文献5）は，周期表全域の元素を含

む多様な無機構造を網羅的に学習し，安定かつ多様性に富
む新規構造を生成できると報告している．MatterGen に
よって生成された構造の約90％がDFT計算で安定性が 

確認され（エネルギー緩和後に結晶構造を保持），そのう
ち半数以上は既存データベースには存在しない新規構 

造であった．一部の構造については実験による合成と物 

性評価も行われ，目標とした特性をもつことが確認され 

ている．

逆　生　成
結晶構造予測はランダムに材料を探し，そのなかで所望

の性質をもつものがあるかどうかを探すようなアプローチ
である．これとは逆に，「こういう性質をもつ材料がほし
い」というゴールを設定し，そこから逆にどのような組成
や結晶構造であればその性質を満たせるかを求めるアプ
ローチが逆生成である．近年では生成AIを用いて，材料

の構造そのものを生み出す研究が進んでいる．実際に生成
された構造が本当に存在可能か（すなわち安定している
か）は，その後，物理シミュレーションや実験によって検
証される．
たとえば先程のMatterGenにおいても，条件付き生成を
使うことで特定の性質をもつような組成，およびそのよう
な結晶を生成することができると報告している．
このようなアプローチにより，有望な候補構造を短時間

で絞り込むことが可能となる．従来では何週間もかかって
いたプロセスが，AIの導入によって数時間で完了するこ
ともある．さらに，AIは過去の経験や人間の直感に頼ら
ず新たな視点で構造を提案でき，複数の条件・制約にも柔
軟に対応可能である．

材料別での応用状況
具体的にこれらのアプローチがどのように活用され始め

ているのか，いくつか分野を取上げて紹介しよう．
リチウムイオン電池をはじめとする二次電池において

は，正極・負極・電解質の開発が活発である．特に次世代
電池として注目される全固体電池では，イオン伝導性と化
学的安定性の両立が重要であり，CSPを用いて未知の安定
なイオン伝導性結晶を探索する研究が進んでいる．これに
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図2　結晶構造探索手法で新たに見つかった結晶例（文献2から引用）
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より，新たな高伝導率・低界面抵抗をもつ候補材料が提案
されている．
また，高分子電解質の分野でも，言語モデルと拡散モデ
ルとよばれる生成モデルを組合わせることで，46種類の
新規ポリマーが提案され，そのうち17種は既存ポリマー
を上回る高いリチウムイオン導電性を示したと報告されて
いる（文献6）．
触媒設計においては，高エントロピー合金（HEA＝

High Entropy Alloy．5種類以上の金属を高濃度で混合し
た合金）触媒の表面サイトに着目し，Persistent Homology 

とよばれるトポロジー解析手法で活性サイトの形状特徴を
抽出し，それらの特徴量を入力とする生成モデル（PGH–

VAE）を開発した．このモデルはOH吸着エネルギーの予
測に特化し，解釈性の高い潜在空間を構築することで高精
度な予測と構造最適化を可能にしている（文献7）．これ
は，構造全体ではなく注目したい特徴のみを抽出・最適化
するという新しい方向性の応用例である．
半導体分野においては，所望のバンドギャップや光学特
性をもつ材料の開発が進められている．電子バンド構造計
算と生成モデルを統合した材料探索が実施されており，逆
生成モデルによって提案された構造のバンド計算を高速に
評価し，それをフィードバックすることで目標とする材料
を効率的に探索する手法が試みられている（文献8）．

今後の課題
AIを使った結晶構造予測や逆生成は強力な手段ではあ
るが，依然として課題は多く残っている．
第一に，学習データの偏りがあげられる．第一原理計算
は正確であるものの，計算コストが高く，実用上はニュー
ラルネットワークポテンシャルなどの近似モデルを用いる

必要がある．しかし，それらのモデルが有効に機能するの
は訓練データがカバーした範囲に限られ，新しい系への一
般化が難しい場合がある．逆生成においても同様の問題が
存在する．
第二に，合成可能性の問題である．AIが提案した構造
が計算上は安定でも，実際には合成困難な場合がある．こ
れに対応するため，合成のしやすさを予測するAIモデル
も近年登場している．ここでは，前回紹介した反応経路の
探索や合成条件予測といった，化学反応AIとの連携も期
待される．
第三に，構造予測という問題一つを取っても，電場やひ

ずみ場をかけた動的条件下での予測，極限環境下での予
測，励起状態での構造変化など，多くの未解決の課題が
残っている．
このように，計算化学とAIの融合は材料探索を大きく

加速しているが，探索空間の膨大さという根本的な問題は
依然として存在しており，今後も継続的な手法の改良と検
証が必要である．
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